Dynamic Modeling and Simulation of Stewart Platform

نویسندگان

  • Zafer Bingul
  • Oguzhan Karahan
چکیده

Since a parallel structure is a closed kinematics chain, all legs are connected from the origin of the tool point by a parallel connection. This connection allows a higher precision and a higher velocity. Parallel kinematic manipulators have better performance compared to serial kinematic manipulators in terms of a high degree of accuracy, high speeds or accelerations and high stiffness. Therefore, they seem perfectly suitable for industrial high-speed applications, such as pick-and-place or micro and high-speed machining. They are used in many fields such as flight simulation systems, manufacturing and medical applications. One of the most popular parallel manipulators is the general purpose 6 degree of freedom (DOF) Stewart Platform (SP) proposed by Stewart in 1965 as a flight simulator (Stewart, 1965). It consists of a top plate (moving platform), a base plate (fixed base), and six extensible legs connecting the top plate to the bottom plate. SP employing the same architecture of the Gough mechanism (Merlet, 1999) is the most studied type of parallel manipulators. This is also known as Gough–Stewart platforms in literature. Complex kinematics and dynamics often lead to model simplifications decreasing the accuracy. In order to overcome this problem, accurate kinematic and dynamic identification is needed. The kinematic and dynamic modeling of SP is extremely complicated in comparison with serial robots. Typically, the robot kinematics can be divided into forward kinematics and inverse kinematics. For a parallel manipulator, inverse kinematics is straight forward and there is no complexity deriving the equations. However, forward kinematics of SP is very complicated and difficult to solve since it requires the solution of many non-linear equations. Moreover, the forward kinematic problem generally has more than one solution. As a result, most research papers concentrated on the forward kinematics of the parallel manipulators (Bonev and Ryu, 2000; Merlet, 2004; Harib and Srinivasan, 2003; Wang, 2007). For the design and the control of the SP manipulators, the accurate dynamic model is very essential. The dynamic modeling of parallel manipulators is quite complicated because of their closed-loop structure, coupled relationship between system parameters, high nonlinearity in system dynamics and kinematic constraints. Robot dynamic modeling can be also divided into two topics: inverse and forward dynamic model. The inverse dynamic model is important for system control while the forward model is used for system simulation. To obtain the dynamic model of parallel manipulators, there are many valuable studies published by many researches in the literature. The dynamic analysis of parallel manipulators has been traditionally performed through several different methods such as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Wrench Feasible Workspace Analysis of a Cable Suspended Robot for Heavy Loads Handling

Modeling and Wrench feasible workspace analysis of a spatial cable suspended robots is presented. A six-cable spatial cable robot is used the same as Stewart robots. Due to slow motion of the robot we suppose the motion as pseudostatic and kinetostatic modeling is performed. Various workspaces are defined and the results of simulation are presented on the basis of various workspaces and app...

متن کامل

Modeling, simulation, and control of a hydraulic Stewart platform

This paper describes the modeling, simulation, and control of an inverted, ceiling-mounted Stewart platform, designed to be a one-person motion simulator. The dynamic equations of the Stewart platform are derived using the virtual work principle. It is shown by simulations that the leg dynamics can be neglected. A model of the electrohydraulic actuator is derived and then veri ed using experime...

متن کامل

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

Dynamic modeling of a Stewart platform using the generalized momentum approach

Dynamic modeling of parallel manipulators presents an inherent complexity, mainly due to system closed-loop structure and kinematic constraints. In this paper, an approach based on the manipulator generalized momentum is explored and applied to the dynamic modeling of a Stewart platform. The generalized momentum is used to compute the kinetic component of the generalized force acting on each ma...

متن کامل

Modelface: an application programming interface (API) for homology modeling studies using Modeller software

An interactive application, Modelface, was presented for Modeller software based on windows platform. The application is able to run all steps of homology modeling including pdb to fasta generation, running clustal, model building and loop refinement. Other modules of modeler including energy calculation, energy minimization and the ability to make single point mutations in the PDB structures a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012